skip to main content


Search for: All records

Creators/Authors contains: "Korte, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Laser ablation electrospray ionization (LAESI) driven by mid-infrared laser pulses allows the direct analysis of biological tissues with minimal sample preparation. Dedicated remote ablation chambers have been developed to eliminate the need for close proximity between the sample and the mass spectrometer inlet. This also allows for the analysis of large or irregularly shaped objects, and incorporation of additional optics for microscopic imaging. Here we report on the characterization of a newly designed conical inner volume ablation chamber working in transmission geometry, where a reduced zone of stagnation was achieved by tapering the sample platform and the chamber outlet. As a result, the transmission efficiency of both large (>7.5 μm) and smaller particulates (<6.5 μm) has increased significantly. Improved analytical figures of merit, including 300 fmol limit of detection, and three orders of magnitude in dynamic range, were established. Particle residence time, measured by the FWHM of the analyte signal, was reduced from 2.0 s to 0.5 s enabling higher ablation rates and shorter analysis time. A total of six glucosinolates (sinigrin, gluconapin, progoitrin, glucoiberin, glucoraphanin, and glucohirsutin) were detected in plant samples with ion abundances higher by a factor of 2 to 8 for the redesigned ablation chamber. 
    more » « less
  2. Abstract

    Soot (sometimes referred to as black carbon) is produced when hydrocarbon fuels are burned. Our hypothesis is that polynuclear aromatic hydrocarbon (PAH) molecules are the dominant component of soot, with individual PAH molecules forming ordered stacks that agglomerate into primary particles (PP). Here we show that the PAH composition of soot can be exactly determined and spatially resolved by low‐fluence laser desorption ionization, coupled with high‐resolution mass spectrometry imaging. This analysis revealed that PAHs of 239–838 Da, containing few oxygenated species, comprise the soot observed in an ethylene diffusion flame. As informed by chemical graph theory (CGT), the vast majority of species observed in the sampled particulate matter may be described as benzenoids, consisting of only fused 6‐membered rings. Within that limit, there is clear evidence for the presence of radical PAH in the particulate samples. Further, for benzenoid structures the observed empirical formulae limit the observed isomers to those which are nearly circular with high aromatic conjugation lengths for a given aromatic ring count. These results stand in contrast to recent reports that suggest higher aliphatic composition of primary particles.

     
    more » « less
  3. Abstract

    Soot (sometimes referred to as black carbon) is produced when hydrocarbon fuels are burned. Our hypothesis is that polynuclear aromatic hydrocarbon (PAH) molecules are the dominant component of soot, with individual PAH molecules forming ordered stacks that agglomerate into primary particles (PP). Here we show that the PAH composition of soot can be exactly determined and spatially resolved by low‐fluence laser desorption ionization, coupled with high‐resolution mass spectrometry imaging. This analysis revealed that PAHs of 239–838 Da, containing few oxygenated species, comprise the soot observed in an ethylene diffusion flame. As informed by chemical graph theory (CGT), the vast majority of species observed in the sampled particulate matter may be described as benzenoids, consisting of only fused 6‐membered rings. Within that limit, there is clear evidence for the presence of radical PAH in the particulate samples. Further, for benzenoid structures the observed empirical formulae limit the observed isomers to those which are nearly circular with high aromatic conjugation lengths for a given aromatic ring count. These results stand in contrast to recent reports that suggest higher aliphatic composition of primary particles.

     
    more » « less